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ABSTRACT

The necessary elements of the calculus for factorials as
developed by Kurkjian and Zelen are described, modified where necessary,
and applied to the analysis of unbalanced n-way classifications with
fixed effects, Estimators for all main effect and interaction effects
parameters are obtained along with the associated variances. The sums
of squares for each effect eliminating all other effects is presented in a
form suitable for direct computation. This form results in considerable
computational saving over the method of fitting constants used in general
regression theory., The results are applied to the particular case of

proportional frequencies in the subclasses.




APPLICATIONS OF THE FACTORIAL CALCULUS TO GENERAL
UNEQUAL NUMBERS ANALYSES&

w. T. Pederer@’gnd M. ZelenL3

1. Introduction

This paper is the second in a series of papers which applies the calculus
for factorial arrangements developed by Kurkjian and Zelen [1962] 1‘:’0 various
problems in the analysis of experiment designs. The first paper dealing with
applications [1963] was devoted to the analysis of block and direct product
designs. The main object of this paper is to apply this special calculus to an
alternate way of treating the analysis of variance with unequal numbers. The
usual way this is done is by the method of fitting constants; c¢f Federer [1957],
Yates [1934]. The use of the special methods developed here leads to substantial
computational savings over the method of fitting constants.

Section two of this paper contains the necessary parts of the factorial calculus
which is the starting point of our investigation. Section three develops the
general theory for unequal numbers and section four shows the resulting

simplification when the frequencies are proportional,

4 Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No,: DA-11-022-0ORD-2059.
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2. Elements of the Factorial Calculus

The notation and special operations usedin this paper will be a modified
version of the calculus for factorial arrangements introduced in Kurkjian and
Zelen [1962]. The modifications are siraightforward generalizations which are
useful in treating the case of unequal numbers.,

Consider a factorial experiment with the n factors {AS} such that factor
As has m levels for s =1, 2, ..., n . The ith treatment combination
consists of the n-tuple i = (il, Loy eeey inQ where iS denotes a particular

n

level from factor AS . The number of treatment combinations is v = IIl mS .
S=

Let Y denotea vx1 random vector following & multivariate normal distribution

with
(2.1) E(Y) = 1p +t
(2.2) V(¥) = o N,

The quantity 1 is @ vx 1 vector having unity elements, p is a scalar, t is

a v x1 vector of (fixed) treatment effect; and the matrix N isa v xv diagonal

matrix having only non-zero diagonal elements ni which denote the number of

observations on the ith treatment. The elements of t are not linearly

independent, but satisfy a singl.e linear restraint which will be described later.
Also define {as}, s=1,2, ..., n, todenote vectors, termed primitive

elements, such that

al =[a (1), af2), ..., a(m]].
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New elements can be formed with the operation of the symbolic dirsct product
(SDP) which is denoted by & . The SDP between a, and aq is defined

to be

[ap ® aq] = [apq(l;l), apq(l,Z), seey apq(l: mq) ’

(2.3)

apq(Z,l), e apq(Z,mq): ey apq(mp’l)’ te0y apq(m :mq)] .

p

Note that the subscript refers to the primitive 'element;'s invol\}ed and the argument
is a vector of two elements which are ordered lexographically. The lexographical
order is to hold the first element of the argument fixed at 1 and run through the
levels 1, 2, v.., mq of Aq; then change the first argument to levei 2 of Ap
and run through the levels of Aq; etc. The SDP is also defir}ed fof more than
two primitive elements in the same way; i.e., ap @ aq & ar, etc. The
elements of ap ® aq denote the vector whose elements are the parameters
associated with the two factor interaction between factors Ap and Aq; the
elements of ap & 3y &® a, denote the vector associateci with the three factor
interactions among factors Ap, Aq , and Ar’ etc.

Let xs be a variable which takes on the values 0 or 1. We define

1
—

a for x
S S

]
o

1 for x
s

and use the convention that a_ ®1-= a_ . Then, if x = (%), X5y 0un, x) ,a
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generalized interaction may be denoted by

X

X Xl XZ n
a” = a (@a2 ® ... ®a

n X,
X
and will have m =1 mil -.components.
i=l1

The model relating the treatment effects to the interaction parameters can

be written by defining

Xs
I "= :
s 1 for x =0 ;
g

\

X - X bid
X 1 -2 n
I —Il ><I2 ><...><In s

where IS is mS xmS identity matrix and 1S is an mS x 1 column vector having

all elements equal fo unitve Then we can write

(2. 4) t=), Ia"
X

where x = (xl, Koy eoes xn) and the ‘summ_ation Z' refers to all the 2" -}
A x
n-digit binary numbers x excluding x =(0, 0, ..., 0) . The components of t
are taken in the same lexographical ordering as the n-factor interaction.
The interaction parameters aX are not linearly independent. Let uS be a

1xn vector with all elements equal to zero except for the sth. element which is

equal to unity and define T by
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vr:(11><12><... xln)N(ilxlzx... ><1n) .

We then define the m ple m diagonal matrix

3

u u

s)’ N(I s

(2.5) w_=—2(1 ) s=1,2, .00, .

)
s v

The elements of WS are proportional to the number of times the various levels

of factor AS appear.

Then a convenient set of restraints among the parameters may be taken to

be
N ' :
‘ 1prap:O pP=1,2, .00, 15
1 X1 , .
S [w_oxw ][a al=0 p#aq=1,2,... ;
| e Wl @agl=0 ptasl, 2, e
I x1 ' :
| P q
(2.6) - < - . o
11XIZ>_<"'XI_n
. L . ' . ) .. 7
S X Lxlo XD [wW) xw, X... X‘Wq][al®az®"'®an]=o'
:[1><IZ><...><1rl
. L -

. -With these restraints, “it can easily be shown that

(2.7) o [11X1'2-X---><‘1ﬁ'][Wl><.W2><-~-><Wn]t=0 .
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We shall find it convenient to use the following notational convention.

Let ZS (s=1,2, ..., n) be matrices and x = (xl, x Xn) be an n-digit

LI

binary number. Then, we shall always write 7> and Z (%) to denote

; X %, X
725 =72 TXZ. X, X2
1 2 . n
(2. 8) ]
' (x) =7 ‘
z2{x) Zs ><Zs ><...><ZS for those X =X =...=x =1
1 2 D sl s2 sp-

_ '_Wh’e'n the -Zs are scalar quantities (say) ZS =2z then

(2.9) - 2" = 2(x)

3. -. . The Genéral Theory of Unequal Numbers

- In t_h'is' sectibn we.shall develop the general theory for unequal numbefs; Our
g Kpf‘oq;a_dure will bé to first find estimates for the various interaction parameters and
-A‘ji.:he.ir"v:’:;riainces and then derive the associated surﬁ of squares for use in the
: a;halysis of variance. The estimation of‘ the various interactions constitutes no real
problem;' the difficult problem is to determine the appropriate sums of squares. .

Let W=W_ X W2 Xeeo X Wn ; then it can easily be shown that the estimablé

1

functions for ti may be estimated from

(3.1) E:[I—;%]Y:[I—%’—V]Y

where 1 is a v X1 column vector having all elements unity, J=11;. and I

is the v Xv identity matrix.
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Consequently we have

.~ 2 AW o _IW
(3.2) vart=o [I- ]Nl[I-- I .
. ‘ .V v
Define the m ¥ m matrix M, by
(3.3) - M o=mI -rw wl .
. st ss Usis s
Also let
‘M. forx .=l
: s s
. -XS ’
- M, =
'$
L ¢ 1 forx =0 s
(3.4)
X X X
M = M Ix M2 X XM D
1 2 0 n
We note that. M ‘may also be written as
LM = M(x) (D)
where M(x} =M XM X...XM_  and X =X  =...x =1
~ s s s s s s
1 2 P ] 2 P

with the remaining X, = 0; i.e. M(x) is the direct product of those MS for

which Xs =1 . We also record for reference

M W =m I -] W
s 8 S 8 &8 s

(3. 5) _ { M W_a_ =m_a
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After some algebra one can show that

(3.6) a’ =M Wi/v
and
(3.7) var 3% = M w Nl wd®) ] o2

~X
Note that the var & may be written as

var 8% = M(x) [T WN W M(x) o 20 P .

The variance can be further simplified. For this purpose define

W o ifx =1
s s
x
w 5=
s
I ifx =0
s s
n X
W o=moxw® .
s
s=1

' ,
Then the quantity[(lx) ‘W] may be written

. l-x

x X ,
wo = W) () W

(™) W= x5 W =wg I x{E )
s=1 s s=1

1

1-x .

1 —
The diagonal matrix [(I") W N~ WI"] can also be written

() W WIS = W) R(x) W(x)

where

(3.8) R(x) = (IX)' Wl—x N—l Wl—x =
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, ~-X
Hence the variance of a  is

(391 | var 3% = (M) W(RR() W MG /v

Note that R(x) and W{x) are diagonal mairices.
~X
It remains to find the sum of squares associated with a . We shall

find this making use of a result on quadratic forms recently given by Rao [1962]

Lemma. Let X=(X, X , ..., X} have a singular multivariate normal
embos Ll LAl l 2) 2 n
R . 2 .
distribution with E(X} = 0 and var X = ¢ Z where the rank of Z is f (f< n) .
Then a necessary and sufficient condition for the quadratic form X'S X/o-2 to
have a chi-square distribution with f degrees of freedom is that S be a real

symmetric n x n matrix having the properties that

(i) $=8),8
(i) =08 ) -

We now turn our attention to finding the mairix S of the above lemma when
Z = M(x} W(x) R(x) W(x) M(x}) . We point out that the degrees of freedom
associated with a” is f(x) = Il'rfl(mi-l)xS (rank of wvar 5X) . Hence there will
exist at least r(x) = m(x) - f(i;l linearly independent non~estimable functions

of ax . These non~estimable functions will be denoted by
- X
(3.10) : K'(x) W{x} a

where KYx) is r(x) xm(x), has rank r(x), and W(x) denotes the direct

product of those Ws for which xS =1
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Define the m(x) x m(x) matrix V(x) by

r 1-1 - Y
W(x) M(x) R (%) K(x) V(x) K(x) U(x)
(3.11) = |
K'(x) R—l(x) 0] LU(x) K'(x) O
whetre
(3.12) U(x) = [K' (%) R (%) K(x)]™

It can be verified that the matrix S of the lemma is
2 ~1
(3.13) S=v V{X)R (x)V(x} .
Therefore, the required sum of squares is
2.~ X, -1 ~X
(3.14) v (a”) {V(x) R (x) V(x)}(a™)

The above sum of squares still requires knowledge of the matrix V(x) which
is not known explicitely. TUsing (3.5}, we can write
ma =M W a
s s s 8 s
and therefore
(3.15) m(x} a~ = M(x)W(x)a. .

Substituting (3.15) in (3.14} results in

m(x)

(= )2(éx)'{W(x>M(x)V(x)R”(x)V(x)M(x)wcx)}(éix) :
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Using the relations of a matrix to its inverse gives
W(x) M(x) V(x) + R () K(x) U(x)K'(x) = T,

k(%) RUx) vix) = O .

Consequently,

W) M=) V(x) R %)V (x) M(x) W(x) = R (x) [T - K() U(x) K(¥) R(=)]

which follows from the fact that the matrix in square brackets in idempotent.
Therefore the sum of squares can be writien as

v

(3.16) ()39 {R‘l(x) [ - K(x) U(x) K(x) R'l(x)]} 5 .

m( x)

Since R({x) is a diagonal matrix, the main computational labor is in computing

the r(x) xr(x) inverse matrix
-1 -1
U(x) = [K'(x) R (%) K(x)] .

The sums of squares for main effects may be written explicitely as r(x) =1

ES

In this case for (say) a

Kix) =1, , W(x)=wW_
RS = R(x)
' -1
Xowe XTI Xoue ><1rl W IN (Wlllxwzlzx...Xst...x wo ln)

=(1 W, X 12W2

N
Ug = (15 R 15)
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The sum of squares for the main effect associated with AS is thus

TR

(3.17) (H)? as' (R - ==-1}a
S S

S

4, Proportional Frequencies

As is well known, the case of proportional frequencies turns out to be

particularly simple. The case of proportional frequencies arises when

N=N XN, X... X N =II XN
1 2 n s

where the NS are such N is the direct product of all NS .

r

Define n =1 N_ 1 ; thenthe W quantities are
S s s s s

mS
W ==— N
S n S
S
and
n
W:H XWS=~N— .
s=] r

Consequently we have

x' X
1WIX=(L) 2NI ¥ N(x)

W(x) R(x) W(x) = (T WN -
r rn(x)

and

~X 0_2 Xl Xl ! XZ XZ ! Xn Xn !
var a =rZVZ [Ml Nl(I\/Il ) XM, NZ(M2 ) ><...><1\/In Nn(Mn )]
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Note that

n M forx =1
S

n forx =20 .

Therefore the variance can be written as
~3 0-2
4.1 vara =— M(x
(4.1) = M(x)
X
as n =1rv .

The sum of squares associated with a* can easily be written by noting

that the second term in (3.16) is a null matrix, This can be demonstrated

by writing
-1 T !x)z
(4.2) R (x) =" N(x)
v n(x)
and thus

‘ 2
K (x) R Yx) 8% :—r—_@@— K'(x) N(x)a~ = O
v n(x)

~ X
The sum of squares associated with a” is then

(4. 3) e G R (3 = BN N B
n(x)
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